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Abstract mation more dif cult. Henceradiometric calibration the
process of inverting the CRF to bring values to the linear
The camera response function (CRF) that maps linear irradiance domain, is a crucial rst step for any algorithm
irradiance to pixel intensities must be known for computa- working with images at different exposures.

tional imaging applications that maich features in images  There have been many different radiometric calibration
with different exposures. This function is scene dependentypproaches proposed for the past 20 years, starting with the
and is dif cult to estimate in scenes with signi cant mo-  seminal works of Mann and Picard [19] and Debevec and
tion. In this paper, we present a novel algorithm for ra- - \alik [4]. However, most of these approaches assume static
diometric calibration from multiple exposure images of a scenes and tripod-mounted cameras, which is not the typ-
dynamic scene. Our approach is based on two key ideasica| scenario for casual photographers. Some researchers
from the literature: (1) intensity mapping functions which haye proposed methods that attempt to recover the CRF for
map pixel values in one image to the other without the needgynamic scenes, but they fail in the presence of signi cant
for pixel correspondences, and (2) a rank minimization al- scene motion, signi cant noise, motion blur, and different
gorithm for radiometric calibration. Although each method  gefocus blur across images. Since highly dynamic scenes
has its problems, we show how to combine them in a formu-are ybiquitous in our world, the problem of automatic ra-
lation that leverages their bene ts. Our algorithm recoser  giometric calibration is an open and important problem in
the CRFs for dynamic scenes better than previous methodsgomputational imaging.

and we show how it can be applied to existing algorithms
such as those for high-dynamic range imaging to improve
their results.

In this paper, we present a new radiometric calibration
algorithm speci cally designed to handle scenes with sig-
ni cant motion. To do this, we build upon two key ideas
from the literature. First, is the concept of intensity miagp
. functions (IMFs) proposed by Grossberg and Nayar [7],
1. Introduction which directly map pixel values in one exposure to another

Many algorithms in computational photography and by transforming theirhistograms. They observed t_hat IM_Fs
computer vision need to combine information from several ¢a@n handle small motion because they do not require nding
images of the same scene (e.g., high-dynamic range (HDR)correspondences between Iimages, which can bg brittle and
imaging, panorama stitching, 3D structure-from-motion). €rror-prone. However, their method for computing IMFs
In some cases the images must be taken at different expocould not handle large scene motions because the histogram
sures, so to match features across images these algorithnf2f the scene radiances changes. Therefore, we presenta new
often assume that pixel intensity values are linearly eelat RANSAC-based algorithm for computing IMFs thatis more
to scene radiance. However, this assumption is violated byrobust to large motions.
the non-linear camera response function (CRF) added by Furthermore, Grossberg and Nayar's method used a
camera manufacturers. This CRF is applied to sensor irra-least-squares optimization which easily overts to noisy
diance measurements to compress the dynamic range of théMF estimates, resulting in incorrect CRFs. To address
sensor irradiance and make the nal images more visually this problem, we leverage a second key idea: the rank-
pleasing. minimization algorithm for radiometric calibration of Lee

If this non-linearity is not accounted for, errors could et al. [15]. This algorithm avoids over tting and presents a
occur when matching across images with different expo- principled approach for radiometric calibration. However
sures. However, the CRFs are generally unknown, consid-Lee et al. used pixel-wise correspondences in their opti-
ered trade secrets by camera manufacturers. Furthermoranization which results in artifacts for scenes with signi -
they can be scene dependent [2, 9, 13] making their esti-cant motion. We address this problem by reformulating the



rank minimization approach to handle IMFs. the ideal inverse CRF would map the input images to the
By combining the two methods, our approach capitalizes image irradiance domain where the values between two im-
on their bene ts. This results in a method that is very sta- ages would differ by a single scale factor (the exposure ra-
ble, avoids over tting, and is also robust to inaccuracies i tio). If these irradiance images are placed into the columns
IMF estimation. Furthermore, it allows the recovery of re- of an observation matrix, this matrix would be rank-one
sponse functions up to an exponential ambiguity even whensince every successive column is linearly dependent on the
no information is available about the exposure values. We rst. By solving for the inverse CRF which minimizes the
demonstrate that our algorithm can estimate the CRFs fromrank of the observation matrix, they avoid the problems with
a stack of images of a dynamic scene more accurately tharover tting which affect least-square algorithms. Further
existing methods. Furthermore, we show how it can be usedmore, in absence of exposure ratios, they can recover the
in practice by using it to improve the quality of state-oéth ~ camera response function up to an exponential ambiguity,

art HDR reconstruction algorithms. which is useful in radiometric alignment applications.
However, Lee et al. use pixel-wise correspondences
2. Previous Work to nd matching intensity values in the different images,

which can be prone to error when the scene motion is large
or complex. To address this problem, we reformulate the
rank-minimization algorithm to leverage IMFs in the op-

Radiometric calibration is usually performed using mul-
tiple aligned images of a static scene taken at known ex-

?oszrgshwithﬁ xed camera. dThe dearlly rr(;efthogs ggiﬂ),(,.dif_ timization directly, allowing it to handle highly dynamic
ered In how they represented and solved for the -MaMNgeanes. This results in an algorithm that is more robust to

and Picard [19], for example, U.SEd a gamma-corrgctingscene motion, camera noise, and image blur than existing
function to represent the CRF, while Debevec and Malik [4] methods

used a nonparametric smooth mapping of image irradiance
to intensity. Mitsunaga and Nayar [21] solved for the CRF .
using a high-order polynomial representation, while Gross 3. Proposed Algorithm

berg and Nayar [8] leveraged a database of response func- \we begin by giving an overview of radiometric calibra-
tions to represent the CRF. All of these approaches assumejon algorithms such as ours. Suppose we take two images
that the scene is static and the camera is tripod-mounted.  of a static scene with different exposures by setting the-shu

There are a few prior approaches that allow some cam-ter times tot; andt,. Letz; be the image intensity mea-
era movement or small scene motion. Mann and Mann [20] surement (p|xe| Va|ue) of a point with image irradia-‘heg
proposed a method that allows camera rotations and simulin the rstimage, whilez, ande, are the corresponding val-
taneously estimates the CRF and exposure ratios, but it doegies of the same pixel in the second image. Assume that all
not work for general motion. As described earlier, Gross- jntensity and irradiance values are normalized [0, 1]. The
berg and Nayar [7] proposed to estimate the CRF by solvingexposure ratio between the two images can be expressed
a least-squares optimization after recovering the intensi ask,, = t;=t, = e;=e,. If f is the camera response
mapping functions between image pairs using histogramfynction that maps linear irradiance to pixel values (e.g.,
speci cation. Their IMFs allow for small scene motion, im-  f (e;) = z, andf (e;) = z,), the goal of this work is to
age noise, and blur as long as the histogram of scene radi-nd the inverse camera response functigre f 1, where
ance does not change much. We extend their approach byn this casey(z;) = e, andg(z,) = €. Using the fact that
proposing a new way to compute IMFs that is more robust e, = k,.; e,, we substitute im to get:
to large scene motions.

Kim and Pollefeys's method [14] allows for free cam- 0(z1) = ka:19(22): 1)
era movement and some scene motion by computing IMFs
using dynamic programming to nd maximal values on the Let 1> be a function which relates the intensity values of
joint histogram built from correspondences. However, this the rstimage to that of the second, such that  1,2(z1).
approach cannot handle noisy observations that are comin a general sense, this can be done in many ways such as
mon in real applications. Methods have also been proposedhrough pixel correspondences (e.g., optical ow), but in
that estimate the CRF from a single image [17, 18], but they this work we propose to use intensity mapping functions
are usua”y nqt very .rObUSt becau.se they .rely strongly on 1In our paper we call the RAW image value at the photo sensor as
edge information, which can be noisy and is often affected the linear irradiance value. Technically, the RAW image eahilinearly
by post-processing in the imaging pipeline. proportional to the amount of light energy collected at thetphsensor.

Finally, Lee et al. [15, 16] introduced a clever radiomet- If we assume the irradiance to be constant over the pixel ftand
ric calibration approach that leverages the low-rank struc SPUtter integration time then the light energy is linearlgiartional to the

. . L irradiance at a pixel. Hence, the RAW image value is often siroplled

ture of sensor irradiances and uses rank minimization to re-,5 image irradiance value [7, 13, 16, 15]. Although this dag$iald when
cover the response function. Their basic observation is tha there is a motion blur we stick with this notation in our paper.




(IMFs). Assume for now that the IMF is provided to us, of the intensity values found in only one pair of images,
although we show later in Sec. 3.2 how to estimate it from which might not represent the entire range of possible pixel

the input images. Substituting this into Eq. 1 gives us: values. By using all the IMFs together we can recayer
for a larger range of intensity values. Second, images with
9(z1) = k21 9( 1:2(21)): (2 different exposures usually have signi cant overlap inithe

intensity values, so including them in the observation matr
D, improves the robustness of our estimate to noise.
To explain how we do this, we show the process of ex-

Let us create a vectd; = [bp b, b b ]" that
contains theK unique intensity values in the rst image

such thafy and 12 (y) follow the constraint® <bj < 1 ending Eq. 5 using three images and generalizelt ion-
and0< 12 (h) < 1. We could then ndg by solvingthe 5465 |ater. This extension can be simply done by including
following least squares optimization, as done in previous o corresponding two IMFs between the adjacent images
approaches [7]: in the observation matri® ; as follows,

)6 = 1 1 .
o=argmin  [oh) keao( 2% (3) Di=[B1] 2 Bul 22 12 B
g

=1 whereB; is a vector containing a subset of values from vec-

The problem with this least squares optimization is that it 10 B1. S.t., none of the values b, de ned above are satu-
can over t the data and can lead to bad estimateg, afs rated, since saturated values break our low-rank assumptio

we will see in Sec. 4. Therefore, we propose instead to useP€cause they are no longer linearly related. For the case
the IMF in a new optimization framework based on the rank With N images, we could generate Bircolumn matrixD;

minimization work of Lee et al. [15], presented next. where itsj + 1 column is computed by applying; +1 to
thej ™ column.
3.1. Our Proposed Rank Minimization Framework Using all pairwise intensity mapping functions for con-

structing observation matri®; could potentially improve
We begin by explaining the basic method of Lee et the robustness by utilizing the overlap between diffenent i
al. [16, 15]. First, we de ne a two-columebservatiorma-  ages. However, the number of intensity values in vector
trixD; 2 Rk 2as B, that remain non-saturated after successive application of
. pairwise IMFs will be greatly reduced and could negatively
D1=[B1j 12 Bal; ) affect the accuracy of the estimation. In the limit, if the
range of exposures in the images is great enough, no pixels
al’s work the function 1., comes from pixel-wise corre- would exist that would be unsaturated through out the entire

spondences, while in ours it is the IMF. We then construct ran_[ge adn(;j SO t?ﬁ siz€ Elfl would bekeﬁf:ct|\:(ely ziro. i
matrixP = g Di1 =[g B1ijg 1, Bi] which 0 address this problem we make two key observations.

if g is correct will be a rank-one matrix because by Eq. 2 lTheW:tS; |snt|hat ;ae\m;/:h Zpec'r?t'image hﬁf t(r:]ons;deratile otverl;
the second column is a multipke.; of the rst. Using this ap only a tew adjace ages © exposure stack.

property, we can solve for the camera response funggion Therefore, by using only these neighboring images in the
by minin’1izing the following energy function: observation matrix we can robustly estimate the camera re-

where is an element wise operator. Note that in Lee et

X # sponse functiog for the range of intensities covered by that
g=argmin rank(g Di)+ H @) - (5) image. Therefore, we propose to divide aII. thg images into
g . @B overlapping groups of sizen (i.e., m 1 pairwise IMFs)
and construct an observation matdx for each group. This
whereH () is the Heaviside step function, i.éH,(x) = allows us to use all available IMFs to improve the robust-

lwhenx 0OandH (x) =0 whenx < 0andB is a vector ness of our estimation while avoiding the problem of sig-
that contains all the valid intensity values. Here, the rst ni cant reduction of valid intensity values iB;. Formally,
term minimizes the rank d? while the second term forces we createaset® m+1 observation matrices as follows,
the CRF to be monotonically increasing by penalizing solu-
tions with negative gradients. Di=[dojdi] j dm 1 ];

Eq. 5 estimates the inverse camera response function us- =B 4= g
ing a single IMF between a pair of images in a rank mini- 0= =i e e B
mization framework, but in practice we usually have more  In our implementation, we selegt to be as large as pos-
than two images with different exposures. Therefore, we sible such thaB; has at least 20 quantization levels, which
need to extend it to include all pairwise IMFs between the is usually around 3 images. Note that this is in contrast to
adjacentimages. This will improve our estimate in two crit- Lee et al.'s method [15], where only a single subset of all
ical ways. First, each IMF contains mapping information the images is used to construct the observation matrix.



Our second key observation is that since the intensity number of a matrix, as proposed by Lee et al. [15, 16]. We
mapping functions are non-linear in nature, uniform quanti use a parametric form fargiven byn™ degree polynomial
zation of one domain causes highly non-uniform sampling function as shown below.

in some parts of the function. To address this discretiza- X2
tion problem, we propose to construct iawmerseobserva- gb= b+ bb 1) ch
tion matrixD ? corresponding to eadd; as follows, i=0

The polynomial function de ned this way has 1 de-
grees of freedom and follows the constraig{8) = 0 and
L =B o .= L g(1) = 1. Experimentally, we founah = 6 to be a good

m 17 Fiemod A B B choice as shown in Sec. 4.3.
where ; ﬁl is the inverse intensity mapping function that
maps the intensity values in the- 1" image to thé™ im-
age. We combine these two observations into a new energyrhe solution to Eq. 6 recovers the response function up to an

DP=[dyjdlj jdy 1l

3.1.2 Exponential ambiguity

function which robustly estimates the inverse CRF: exponential ambiguity. This means thagifs a solution to
Eq. 6 suchthatrarf D;) =1, theng is also a solution.
N xm+1 For example, ify B; = xand@ 12 Bi = kaix,
g = argmin rank(g D;)+ rank(g D) then§ B; = x andg 12 Bi = kp,x are stil
o i=1 I linearly related, albeit with a different ratio. Therefptie
X Q@) observation matrix still has rank of one.
* H @B ®) This corroborates the observation of Grossberg and Na-

! yar [7], who found it was impossible to recover the ex-

In summary, the optimization problem we proposed differs posure ratio and inverse response simultaneously from the
from Lee et al.'s method [15] in two important ways: IMF without making a prior assumption on either one rst.
] . In our case, if the exposure ratios are unknown we cannot
Instead of using pixel correspondences, we proposese the inverse CRF to recover the actual radiance values,
the use of IMFs to construct the observation matrix pt it is still very useful for radiometric alignment apyaic
Di. Not only are IMFs more robust to motion than jgns Jike high-dynamic range imaging where we can relax
pixel correspondences, but they are also a very com-ihe need to know exposure values (see Sec. 5). Furthermore,
pact representation (Lee et al. need thousands of pixeli he exposure ratios are available we can resolve the expo-

correspondences to construct their observation matrix, nential ambiguity and recover the inverse CRF through the
whereas the intensity values in our matrices are Oﬁe”following least squares problem:

less than 256). This makes our optimization step much

X X
faster as well. * = argmin 6 () ki (i (B ()
Instead of selecting a single subset of images to con- b
struct one observation matrix and solving pto lin- In our work, we used Levenberg-Marquardt method to solve

A i i 0
earize it, we propose to compute multiide andD; this optimization problem. Once we have estimatedhe
observation matrices, and solve fpto linearize them ;.\ arse camera response function is givergby” .
all together. As we shall see in Sec. 4, this makes our

estimation more robust and improves its performance 3 2 |ntensity Mapping Functions

on average. _ .
We now return to the problem of computing the inten-

sity mapping functions between input images. To do this,
there are two general approaches. The rst computes the
The objective function in Eq. 6 can be solved using standardIMF using the joint histogram of two images. These meth-
optimization techniques. We use the Levenberg-Marquardtods rst aggregate the intensity values of the correspond-
method in our experiments. While the intensity mapping ing pixels in the two images into a joint image histogram.
function estimated by our approach gives a reasonably goodThen, they estimate the intensity mapping function using
approximation, to further improve the robustness and ac-regression methods or some kind of tting (e.g., dynamic
curacy of our approach we adopted the outliers rejection programming [14]) over the intensity pairs in the joint his-
method proposed by Lee et al. [15]. Please refer to our sup-togram. Although these approaches can sometimes handle
plementary material for further detalils. object motion using an appropriate outliers rejection tech
Finally, instead of minimizing the rank of a matrix in our nique, they are not robust and fail to estimate the inten-
optimization problem, we minimize the second condition sity mapping function in presence of highly dynamic scene,

3.1.1 Solving the optimization problem



noise, motion blur, and different defocus blur across im- (1;1). In each RANSAC iteration, we select control points
ages. such that they are monotonic and well separated from each

On the other hand, Grossberg and Nayar [7] proposedother. If these conditions are satis ed we t cubic Hermite
an alternative approach for estimating IMF using 1D his- splines and calculate the inlier modes percentage. Once we
tograms of the two images without the need for pixel cor- have tamodel using cubic Hermite splines, we nd all the
respondences. They showed that if the histograms of scen@ixel correspondences in imageandl; whose intensity
radiance in two images are similar, the IMF can be com- pair (I;(p);; (p)) lie inside a xed threshold (0:05in our
puted using the histogram speci cation between the two 1D implementation) from the model. Please refer to [10] for
histograms. This approach can faithfully recover the IMF more details on this. The cubic Hermite splines t is used
in presence of small scene motions, image noise, and blujust to remove the pixel correspondences, whose intensity
since they do not change the histogram of scene radiancegair could be large outliers to the ground truth IMF. We re-
signi cantly. However, in case of large motion, the his- move these outlier pixel correspondences from the images
tograms of scene radiance change signi cantly and henceand proceed to next step.
this method fails to accurately estimate the IMF. Since this
approach only uses 1D image histograms detecting the larg
motion using outliers rejection techniques is dif cult.

In order to reliably estimate the IMF in all cases (includ-
ing large and small motion and in presence of signi cant
image blur and noise) we propose a novel hybrid approach
that utilizes these two methods to avoid their problems. In  We have tested the above approach to compute the IMF
our system, we rst detect the large motions in a joint his- on many image pairs and found it to be very robust even
togram generated from pixel correspondences between twdn complex scenarios. We compute the intensity mapping
images. Once these pixels are identi ed, we exclude themfunctions between adjacent image pairs and use them in our
and accurately estimate the IMF using histogram speci ca- optimization framework (Sec. 3.1) to recover the inverse
tion which is robust to remaining small motions, noise, and camera response function.
blur.

Our proposed approach has the following three steps to
estimate an intensity mapping functior, , between a pair
of images:

1) Remove camera motion:We perform the rough regis- ) . )
tration of the images using a global homography computed Ve implemented our algorithm in MATLAB and show

with RANSAC [5] from sparse SURF keypoint matches[1]. {1 performance of our approach through extensive exper-
2) Remove outliers due to large motionsFirst, we con- Iments on both synthetic and real world images. We com-

- . ] are against the radiometric calibration algorithms by Lee
struct a joint histograml; (b,;by) for the two globally b :
aligned images using the intensity pa(ts(p); |; (p)). We et al. [15], Grossberg and Nayar [7], and Mitsunaga and

then nd the maximum mode of data corresponding to each ][\Iayt/JartrEZtﬁ]._ Wet;:sg thz kfte et al.s [1d5]l\||mpltlamentat|onh
bin b in the joint histogramJ; (by;by). This is done by orbo eirmethod and Mitstinaga and iNayars approach,

performing mean shift clustering [3] over the intensity-val Eg? uas: dolllJ; o;/\r/n S”']:ElsT:gt:ttlgln‘sogrt]zeMnEthnO; 2;%(;0;2;_
ues of all the pixels in imagg that contribute to the bin r'g meth dy w rII< with pixel .rr ndl nu 9 W m
b, in the joint histogram and selecting the maximum mode. yars metnods wo PIXEl correspondences, we com-
We empirically found that using a xed kernel bandwidth of pute the inverse camera response function using 1,000 ran-

0:15for mean shift clustering provides the best performance :sgqgszetlﬁgtrii;aar:%f;evﬁ rciﬁa;ttgc'js c'?éo;f?nso\:ﬁ é'g:ﬁs
and used it in all of our experiments. P

. . . arisons.
Since large motions are infrequent, most of these modesp

are expected to lie close to the ground truth IMF and only  Although the focus of our approach is handling large mo-
a few corresponding to the large motions are outliers. In- tions, we rst evaluate our performance in handling image
spired by Hu et al. [10], we detect the inlier modes by t- noise on the synthetic dataset by Lee et al. [16]. We demon-
ting cubic Hermite splines in a RANSAC framework. In strate similar performance in comparison with the state-of
each RANSAC iteration, we select the control points for the the-art approach by Lee et al. [15]. We then show that our
Hermite splines and nd the inlier percentage. We select method produces signi cantly better results than the other
one to four control points depending on the range of bins approaches on real world images with large motions. Fi-
spanned by the valid mode points in the joint histogram. In nally, we evaluate the importance of different components
addition to this we select two control points @; 0) and in our method through extensive analysis.

3) Compute the nal IMF: The joint histogram computed
EI‘Jsing these inlier pixel correspondences can still be very
noisy due image noise, blur, small mismatches, etc. Hence,
we use histogram speci cation, as proposed by Grossberg
and Nayar [7], to compute the nal IMF.

4. Experiments
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Figure 1. Cumulative histogram of number of successful casesFigure 2. Cumulative histogram of number of successful cases
w.r.t. RMSE for the entire synthetic dataset. Larger values showsw.r.t. RMSE for the entire real dataset. Our method shows sig-
better performance. Our method has similar performance to theni cant improvement over the previous approaches.

Lee et al.'s method [15] in handling image noise, despite the fact

that the focus of the paper is handling large motions.

. . . defocus blur in the images of an stack. We demosaic the

4.1. Simulations on synthetic dataset RAW images and apply 201 CRFs from the DoRF database

We synthetically generated scene radiances in the rangd® generate aset@ 201 = 4020multiple exposure im-
of [0; 1] with four different distributions (see supplemen- 2ge stacks. Note that the radiometric calibration needs to b
tary material), as proposed by Lee et al. [16]. For each Performed separately for each color channel. To show our
distribution, we produced ve one dimensional irradiance results we arbitrarily chose to perform the radiometric cal
images of sizel0Q, 000 with exposure times of step 0.5 iPration for green channel only. To have a fair comparison,
(0.0625,0.125, 0.25, 0.5, 1). We then added Gaussian nois&/€ remove the global camera motion in each image stack
with ve different standard deviations (0, 0.0025, 0.0050, Py homography and use the aligned images as input to all
0.0075, 0.0100) to each images resultingin5 = 20 irra-  the other approaches.
diance image stacks. Finally, we applied 201 camera curves .
from the DoRF database [8] and quantized the images to. F19- 2 Shows that our method has superior performance
256 levels to producB0 201 = 4020synthetically gen- N comparison with the other radiometric callbratlon_ ap-
erated multiple exposure image stacks. proaches. To evaluate the effect Qf scene pro.per'tlles on

We demonstrate the overall performance of our approachtn€ performances, we show comparison on four indvidual
in comparison against other methods in Fig. 1. We calcu- Image stacks in Fig. 3. Mlt_sunaga and Nayars approach
late the root mean squared error (RMSE) between the esti'S des'g”ed to work on static images, and thqs, performs
mated and ground-truth CRFs and for each method we plot,poo,rIy in all Fhe Cases. Nc_>te th"’?t although the image stack
the number of image stacks with RMSE less than a spe-'n Fig. 3 (a) is aI.most statlc,'thelr' method performs poorly
ci c value. Although the main advantage of our approach is because of _the images having different defocgs blur. Lee
in handling highly dynamic scenes, we demonstrate similar €t @ US€ pixel correspondences, and thus, fail to robustly
performance in comparison to the state-of-the-art allgorit e§t|mate ’Fhe CRF fgr the image stack shown-m Fig. 3(_b)
of Lee et al. [15] on this synthetic dataset with only image with drastic change in defocus blur. However, since the his-

noise. Next, we show the performance of our approach onltogr"’r‘]m of scetr:e radlaclince in ‘?"ffere”t |mhagesf is fairly Tl'm"
casually captured images of real world scenes. ar, the Grossberg an Nayars approach performs wel. On
the other hand, the image stack in Fig. 3 (c) contains large

motion and their method fails to robustly estimate the CRF
because of the violation of the histogram similarity assump

We use 20 RAW multiple exposure image sets from Sention. Nevertheless, Lee et al.'s approach is able to handle
et al. [23]. These images, shown in the supplementary ma-large motion through outliers rejection and performs well
terial, cover a variety of different cases (indoor, outdolyr in this case. Finally, all the other methods perform poorly
namic, and static) and have been taken by hand-held camin Fig. 3 (d) because of drastic change in defocus blur and
eras. Moreover, in most cases both the aperture size andarge motion. Our approach consistently produces better re
the exposure time are varied resulting in having different sults in all the cases.

4.2. Simulations on real dataset
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Figure 3. Cumulative histogram of the number of successful casg¢sRMSE for four real exposure stacks from [23]. Only two images
for each set are shown for compactness (see supplemental feefs)l and a gamma curve is applied to them for display. Our method
performed consistently well in all cases we tested, often much better xistimg approaches. Note that scene (a) is almost entirely static
so several methods perform well.
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the polynomial degree increases.

Effect of using forward and inverse IMFs: As ex-
plained in Eq. 6, we handle the discretization problem using
two observation matriceB; and D? computed from for-
ward and inverse intensity mapping functions. We evaluate
the effect of each term by comparing the result of our ap-
proach using forward, inverse, and both of them. As can be

B seen in Fig. 5 (a), using both forward and inverse intensity
Figure 4. Effect of polynomial order on optimization method. (a) mapping function |mpr9ves the RMSE performance on an
Using our IMFs in least squares framework. (b) Proposed method.2verage for the synthetic dataset.

Number of stacks < RMSE
Number of stacks < RMSE

Please see the text for description. Effect of combining observation matrices: As ex-
plained in Sec. 3.1, we divide th¢ images into overlap-
4.3. Analysis ping groups ofn images. We then compute an observation

matrix, D, for each group and use all of them in a sin-

Effect of polynomial degree: As explained in Sec. 3.1, gle energy function. We now compare this approach with
we use am™ degree polynomial function to model the CRF. an approach where we use just one observation matrix
Increasing the polynomial degreevould increase the ex-  and the corresponding inverse observation madbrx We
ibility of the method to model more complicated CRFs, but perform this analysis on real image dataset. We came up
increases the chance of over tting to noise. We evaluate thewith several strategies to select one observation mattix ou
effect of polynomial degree in our rank minimization frame- of all the valid ones. The RMSE performance of each of
work and compare it to the least squares framework, as pro-this strategy is compared with our approach and is shown
posed by Grossberg and Nayar [7], in Fig. 4. As can bein Fig. 5. The different strategies which we used involved:
seen, there is a signi cant drop in performance of the least 1) always using the rst observation matrix, i.e., using im-
squares framework from 7 to 8 which shows this approach ages with lower exposure values, 2) always using last ob-
is prone to over tting. On the other hand, our rank mini- servation matrix, i.e., using images with higher exposure
mization framework consistently produces better resudts a values, 3) always using center observation matrix. On an
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- - straint on the inverse CRF for each color channel as follows:
é ’é N . X X X 2
=argmin [6'(®) Kiwi @' Criiva ()]

5. sl :. a i
-/ / st ()= & ()= 6’ ()=

iy / (®)

R T where =[Kz1 Ks:2 Knew 11 2 3]is anunknown

@ © vector and index represents different color channels. The

Figure 5. We analyze the effect of different components of our op- estimated inverse camera response function for each color
timizz?ltion problem on.the overall RMSE performan(:g).Effect channel,§ ' (), satis es the above constraint and differs
of using forward and inverse IMFgb) Effect of combining ob-  from the true inverse camera response function by the expo-
servation matrices. Please see the text for description. nential ambiguity[ﬁz-l Qg-z QN.N 1] are the estimated
pseudo exposure ratios. The constraints shown in Eq. 8 are

arbitrary and can be set according to the application. In our
average, our approach gave the best RMSE performance agyeriments we set = 0:5and = 0:2. Given non-linear

compareq to any Qf the above djscus;ed stra.tegies. Our aPnput LDR images, we apply the inverse camera response
proach tries to utilize all the availabl images inthe mul- ¢ ,1ctions solved using Eq. 6 and 8 to recover linear LDR

tiple exposure image stack by estimatmghich linearizes images and pseudo exposure ratios. We can then use the
each of the valid observation matrices and hence is More;iyearized LDR images and pseudo exposure ratios in an

robust as cgmpart_ed _to selecting an observation matrix CONeyisting HDR reconstruction algorithm.
structed using pairwise IMFs computed on a subsetl of We show the result of HDR reconstruction methods of

Images. Sen et al. [23] and Oh et al. [22] using different radiometric
calibration methods as a preprocessing step in Fig. 6 and 7,
respectively. Since the HDR reconstruction method of Hu

5. Application in HDR imaging et al. [11] does not require radiometric calibration, weals
show their results. Note that since Lee et al. and our ap-

We demonstrate the application of our method in high- proaches are based on rank minimization, we use the above
dynamic range (HDR) imaging by using it as a prepro- method to estimate the pseudo exposures, but provide the
cessing step for HDR reconstruction algorithms of Sen et ground-truth exposures for Grossberg and Nayar [7]. As
al. [23] and Oh et al. [22]. These approaches take multiple S€€N, using our method to perform radiometric calibration

low-dynamic range (LDR) images at different exposures asin the preprocessing step results in artifact-free HDR im-

input and generate an HDR image, but assume the LDR im-ages in all cases.

ages are linearized. Therefore, if the input LDR images are ~ We have tested the above approach for many non-linear

in Jpeg or other non-linear formatS, the CRF need to be es_LDR image sets and were able to achieve a gOOd estimation

timated by a radiometric calibration approach and be usedof inverse camera response function and the pseudo expo-
to linearize the images. Using our method for radiometric Sure ratios, and therefore, achieve artifact-free recoost
calibration enables such HDR reconstruction methods to betion of HDR images. Hence, using our method to estimate
applied to any non-linear image set. Working directly with the inverse camera response function, the HDR reconstruc-

SUCh images e“minates the need for RAW images Wh|Ch tion methOdS, that assume the input LDR images to be linear

usually take a lot of memory (around 100MB for the im- in nature, can in general be applied to any non-linear input

age stack) and may not be available for all the commercial LDR image set, thus improving their applicability.

cameras. This is even more necessary for HDR video al- )

gorithms like Kalantari et al. [12] which need RAW video 6. Conclusion

fr.ames, requiring e>.(tremely huge memory even for.a short We have presented a new radiometric calibration ap-

video. However, using our method as a preprocessing step

. . . roach that could robustly recover inverse camera response
such HDR image an_d v!deo regonstructlon methods can be?unction from multiple exposure images of a dynamic
more generally applied in practice.

scene. Our proposed intensity mapping function estima-

As described in Eqg. 7, to resolve the exponential ambi- tion method is robust to large scene motions and other
guity, exposure ratios should be known. However, in some noisy observations. We have proposed a new optimiza-
cases this information is not available and it is important tion method, that uses intensity mapping functions in a rank
to estimate the exposure ratios directly from the input LDR minimization framework and solves for the inverse camera
images. This can be done by modifying Eq. 7 to have a con-response function. We showed the superior performance of
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Figure 6. We used different radiometric calibration methods to linearizg#teL DR images, shown on left. We then use the linearized
images as input to the HDR reconstruction method of Sen et al. [23] tapedtie nal HDR images. We also include the result of Hu
et al.'s HDR reconstruction method [11] which does not require radtdmcalibration. Note that all the results are tone mapped with the
same setting. “Linear” implies that a linear inverse camera curve washaskfor radiometric calibration, i.e., using the jpeg LDR images
directly in Sen et al.'s approach. Since the CRFs are non-linear in bathprs, assuming linear CRF introduces artifacts in the results.
Grossberg and Nayar's method can handle small scene motion dndpewell on the top example, however, it fails on bottom example
due to large motions which cause signi cant change in the scene acudglenexposure images. On the other hand, Lee et al.'s algorithm
is able to reject the outliers due to large motions and successfully handlesttbem example, but fails to provide a good calibration in the
top example due to drastic different defocus blur and scene motiont &#liséHDR reconstruction method introduces artifacts in both the
examples (See absence of wrinkles on clothes in the rst example dmdactifacts in the second example). Our method can handle noisy
observations as well as large motions, and thus, using our radiomdthiratan method as a preprocessing step results in artifact-free
HDR images. The LDR images are obtained from [23] (top) and [6] (botto
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Figure 7. We used different radiometric calibration methods to lineariz@ége DR images and then use the linearized images as input to
the HDR reconstruction method of Oh et al. [22]. The LDR image stacktaiméd from [23]. All the competing radiometric calibration
approaches perform poorly on this challenging scene resulting in pp& téconstruction results by the method of Oh et al. Moreover,
the HDR reconstruction method of Hu et al. cannot handle the scenadmcoflarge motions. Note that we were not able to produce HDR
result using LDR images linearized by Grossberg and Nayar's apprsiace their estimated CRF is not monotonically increasing. Our
method is robust to large scene motions and when used as a preprgstsp results in artifact-free HDR image by method of Oh et al.



our method as compared to other radiometric calibration ap-
proaches by conducting extensive experiments on synthetic
as well as real datasets. Finally, we showed that how using[12]
our approach as a preprocessing step improved the quality
of some of the state of art algorithms for high dynamic range

imaging.

7. Acknowledgments

The authors would like to thank the reviewers for their
insightful suggestions. This work was funded by National [14]
Science Foundation grants 11S-1321168 and 11S-1342931.

References [

(1]

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-
up robust features (surf). Comput. Vis. Image Underst.
110(3):346—-359, June 2008.

[2] A. Chakrabarti, D. Scharstein, and T. Zickler. An empirical [

(3]

(4]

(5]

(6]

(7]

(8]

camera model for internet color vision. Rroceedings of
the British Machine Vision Conferencpages 51.1-51.11.
BMVA Press, 2009. doi:10.5244/C.23.51.

D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysiRattern Analysis and Ma-
chine Intelligence, IEEE Transactions ,084(5):603—619,
May 2002.

P. E. Debevec and J. Malik. Recovering high dynamic range
radiance maps from photographs. mMmoceedings of the
24th Annual Conference on Computer Graphics and Inter-
active TechniquesSIGGRAPH '97, pages 369-378, New
York, NY, USA, 1997. ACM Press/Addison-Wesley Publish-
ing Co.

M. A. Fischler and R. C. Bolles. Random sample consen-
sus: A paradigm for model tting with applications to im-
age analysis and automated cartograpi@ommun. ACM
24(6):381-395, June 1981.

O. Gallo, N. Gelfand, W.-C. Chen, M. Tico, and K. Pulli.
Artifact-free high dynamic range imaging. Gomputational [
Photography (ICCP), 2009 IEEE International Conference
on, pages 1-7, April 2009.

M. Grossberg and S. Nayar. Determining the camera
response from images: what is knowable? Pattern
Analysis and Machine Intelligence, IEEE Transactions on
25(11):1455-1467, Nov 2003. [
M. Grossberg and S. Nayar. Modeling the space of camera
response functionsPattern Analysis and Machine Intelli-
gence, IEEE Transactions p26(10):1272-1282, Oct 2004.

[9] J. Holm. Pictorial digital image processing incorporating [

(10]

(11]

adjustments to compensate for dynamic range differences,
Sept. 30 2003. US Patent 6,628,823.

J. Hu, O. Gallo, and K. Pulli. Exposure stacks of live
scenes with hand-held cameras. Mnoceedings of the
12th European Conference on Computer Vision - Volume
Part |, ECCV'12, pages 499-512, Berlin, Heidelberg, 2012.
Springer-Verlag.

J. Hu, O. Gallo, K. Pulli, and X. Sun. Hdr deghosting:
How to deal with saturation? I€@omputer Vision and Pat-

[13]

15]

16]

tern Recognition (CVPR), 2013 IEEE Conference jmages
1163-1170, June 2013.

N. K. Kalantari, E. Shechtman, C. Barnes, S. Darabi, D. B.
Goldman, and P. Sen. Patch-based high dynamic range
video. ACM Trans. Graph.32(6):202:1-202:8, Nov. 2013.
S. J. Kim, H. T. Lin, Z. Lu, S. 8sstrunk, S. Lin, and
M. Brown. A new in-camera imaging model for color
computer vision and its applicationPattern Analysis and
Machine Intelligence, IEEE Transactions,o34(12):2289—
2302, Dec 2012.

S. J. Kim and M. Pollefeys. Robust radiometric calibration
and vignetting correction. Pattern Analysis and Machine
Intelligence, IEEE Transactions or80(4):562-576, April
2008.

J.-Y. Lee, Y. Matsushita, B. Shi, I. S. Kweon, and K. lkeuchi.
Radiometric calibration by rank minimization. Pattern
Analysis and Machine Intelligence, IEEE Transactions on
35(1):144-156, Jan 2013.

J.-Y. Lee, B. Shi, Y. Matsushita, |.-S. Kweon, and K. lkeuchi.
Radiometric calibration by transform invariant low-rank
structure. InComputer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference ,qrages 2337—-2344, June
2011.

1 S. Lin, J. Gu, S. Yamazaki, and H.-Y. Shum. Radiomet-

[18]

[19]

20]

21]

22]

(23]

ric calibration from a single image. I@omputer Vision
and Pattern Recognition, 2004. CVPR 2004. Proceedings of
the 2004 IEEE Computer Society Conferencewvariume 2,
pages 11-938-11-945 Vol.2, June 2004.

S. Lin and L. Zhang. Determining the radiometric response
function from a single grayscale image. @omputer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference prolume 2, pages 66—73 vol. 2, June
2005.

Mann, Picard, S. Mann, and R. W. Picard. On being “undigi-
tal' with digital cameras: Extending dynamic range by com-
bining differently exposed pictures. Proceedings of IST
pages 442-448, 1995.

S. Mann and R. Mann. Quantigraphic imaging: Estimat-
ing the camera response and exposures from differently ex-
posed images. I@omputer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference pmolume 1, pages 1-842—-1-849 vol.1,
2001.

T. Mitsunaga and S. Nayar. Radiometric self calibration. In
Computer Vision and Pattern Recognition, 1999. IEEE Com-
puter Society Conference owolume 1, pages —380 \Vol. 1,
1999.

T. Oh, J. Lee, Y. Tai, and |. Kweon. Robust high dynamic
range imaging by rank minimizatiorPattern Analysis and
Machine Intelligence, IEEE Transactions ,0RP(99):1-1,
2014.

P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B.
Goldman, and E. Shechtman. Robust Patch-Based HDR
Reconstruction of Dynamic SceneACM Transactions on
Graphics (TOG) (Proceedings of SIGGRAPH Asia 2012)
31(6):203:1-203:11, 2012.



